玛娅文学

手机浏览器扫描二维码访问

第九十二章 微积分的故事(第1页)

翌日。清晨时分,旭日东升,一抹朝阳落在清华园。西院第28号房。书房内。窗户染了一层白霜,一缕缕阳光透过窗户照进无奈,屋内静谧无声,一个木制立式黑板搬进了书房。“要学微积分,首先你要搞懂微积分是什么,不能知其然,不知其所以然。”

华罗庚立于黑板旁边,写下了六个字。微积分是什么。“我们先从最基础的求面积讲起,在古希腊时期,阿基米德那个时代人,处于初步发展阶段的几何,数学家们遇到一个棘手且严峻的问题,那就是求面积,三角形和正方形这些图形有面积公式,所以求解很简单,但问题在于,那些不规则图形的面积该怎么求?”

“例如我现在画的这条S型曲线,这条曲线围成的面积需要求解,但没有公式,这个时候,如何求解一条曲线围成的面积,就成为了当时数学家们研究的问题。”

“阿基米德找到了办法,余华,你知道是什么办法吗?”

华罗庚目光看向余华。“穷竭法,用熟悉的图形去无限逼近曲线围成图形的面积。”

余华回答道。“对,穷竭法,提出者安提芬,改进者欧多克斯,完善者阿基米德,穷竭法思想就是用无限个熟悉图形去求一条曲线围成图形的面积,在数学史上,穷竭法被视为微积分的前身,且严谨性无可挑剔。”

华罗庚右手握着粉笔,画出穷竭法的求解过程,用一个个三角形去填充S型曲线所围成的面积,最终求出面积大小。整个过程极为繁琐,但无比严谨。华罗庚求解完成,随即用板刷擦去公式和图形,又重新写下一个新的概念,通过矩形求面积:“穷竭法沿用到了十七世纪,这一千多年历史之中,有我国的割圆术求面积,但计算过于复杂,并不适用,穷竭法自身局限性也逐渐明显,对于不同曲线围成的面积需要使用不同的图形去逼近,而不同图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

严谨是数学的灵魂。失去简单性,数学失去很多愚笨者。失去严谨,数学将会失去一切。如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。“牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”

华罗庚面容严肃,在黑板上写下了微积分基本定理:“而在此前,微分和积分,还是两个单独学科,微分求导数,积分求面积,互不相干,在牛顿和莱布尼茨的作用下,微积分完整体系建立。”

微分与积分之间的互逆运算。这是微积分的核心,至此,人类文明发展史上极为重要的微积分诞生,微积分基本定理又被称为牛顿——莱布尼茨公式。真是天才……余华聆听了微积分诞生的历史进程,心中微微感叹,将两个单独的学科联系在一起,并且敏锐发现微分和积分之间的互逆运算,不愧是历史上两位最顶尖的大牛。互逆运算是什么概念?简单而言,那就是求面积的问题,可以转变为求导数,求导数的问题转变为求面积,互相变换。如果积分之路走不通,那就从低维度研究转变为高维度研究,用微分解决问题。如果微分之路走不通,那就从高维度研究转变为低维度研究,用积分解决问题。此外,还可逆向积分求面积。若你要问它的意义在哪里?意义非常重要,在于极大程度上缩减了繁琐的计算过程,简化计算难度,极大提升数学各分支的发展效率。微积分能求的东西实在是太多了,例如微分导数的极值。极值非常重要,大炮发射的炮弹飞行极限距离,一船货物利润数据,从某地出发到某地之间的那条路线距离最近等等。这是科学研究最重要的工具,亦是由人类亲自创造的数学武器。“当然,这个时候的微积分体系还不算完美,无穷小量问题使得微积分的基础并不稳固,无穷小量的问题在于通过动态方式来定义极限,一个量在逼近0的过程中,有无数个实数,这样是行不通的,由此引发第二次数学危机,后来数学家柯西和魏尔斯特拉斯重新定义了极限,至此,微积分的基础终于稳固,后来由法国数学家勒贝格研究的勒贝格积分,为微积分收官。”

华罗庚缓缓讲述关于微积分和无穷小量之间的关系,转而在黑板上写出一串公式,这是勒贝格积分:“我在英国剑桥大学留学期间,曾经有幸去了一趟法国,见到勒贝格先生,收益很大,不过,关于微积分在无穷小的领域,我认为还有很大研究价值,日后你可以尝试一下这个领域,微积分既是数学研究的基础,更是科学研究的工具,明白吗?”

“明白。”

余华听闻,点了点头,记下华罗庚送给他的一个数学研究方向。华罗庚点头,正色道:“在知道微积分是什么之后,我们学习起来就更加容易,接下来讲函数、导数与极限,第一本书你看了多少?”

“看完三分之一部分,函数和导数都懂。”

余华回应道,昨晚学习时间不长,他只看了《导数与极限》的三分之一。“好,那就从极限开始讲起。”

华罗庚听闻,眼中透出赞赏之色,顿了顿,细细讲解:“微积分的极限定义为……”

();()

热门小说推荐
这个梦境很有趣

这个梦境很有趣

这个世界没有灵异,但梦里有。鬼,妖,恶魔,凶兽,邪神,罪恶之人梦里都有。从第一个能够杀人的梦境灾厄出现,世界就变得诡异了起来。在这般危险的世界里。得到一个叫做相亲相爱一家人的面板,突然拥有一个幸福美满家庭的杜方,感觉自己的画风不太对。这个梦境很有趣为作者李鸿天创作,目前连载中,搜小说为你第...

铠甲:开局拥有四大终极铠甲

铠甲:开局拥有四大终极铠甲

简介关于铠甲开局拥有四大终极铠甲因为过度劳累导致加班猝死,穿越到铠甲勇士的世界,成为苏启强的儿子,名副其实的富二代,京都的太子爷。苏宇在所有的选择中选择了摆烂,在水木大学当起了保安,但老天不如愿,四大终极铠甲召唤器蜂拥而至,躺平的生活被彻底打破。亲爱的异能兽哟,你要的是帝皇铠甲召唤器呢,还是雷霆雅塔莱斯召唤器呢,亦或者是修罗铠甲召唤器,当然还有捕王铠甲召唤器可以供你选择哦!请选择你想要的召唤器,作为你最后归西的证明!异能兽们惶恐不安,欧克瑟纷纷被打爆,幽冥魔也是十分的无奈,拥有炼狱修罗的路法哀声叹气。四大召唤器在手,拳打虫皇,脚踢虫母,举世无敌,谁人能挡!...

全员大帝修为,你说这是精神病院

全员大帝修为,你说这是精神病院

简介关于全员大帝修为,你说这是精神病院穿越到高武世界的林天,继承了一家精神病院。本以为会平平无奇度过余生的林天,脑海中突然响起了系统的提示音!林天顿时一愣,自己这就无敌了?可是整座精神病院加上自己也只有三人而已。而除了自己以外,其余的两个装疯卖傻的老头,居然都是山海境界的强者!原本林天以为自己会过上大隐于市的无敌生活。谁知道突然有一天,一个自称人皇的老者前来办理入院手续。自从那以后,精神病院就再无安宁!66续续有大能者前来定居!以下是病友阐述。神锻一脉我本以为我的锻造手段天下一绝,直到看到林天,从此我不敢在他面前拿锤!盗神传人林天的手法快到即使我逆转时间也无法看清楚!狐族女帝把我尾巴顿了,给林天夫君好好补补!当代人皇我一人可使人族万年无忧,林天一人能让万族永世臣服!西方圣女直到遇到林天,我才知道自己不是病娇,而是精神病!异族大帝当我在战场上看到精神病院的白大褂时,我就知道,一切都多余了!...

终极:我有一剑可破苍穹

终极:我有一剑可破苍穹

简介关于终极我有一剑可破苍穹在家看终极系列的李啸淳无意之间穿越来到终极世界。本以为自己只是穿越到一个平行时空只能当一个小乞丐时,碰到一位老人,无意之间被他看上收为徒弟,从此走上巅峰。李啸淳我有一剑可破苍穹...

福满农家:穿成团宠后带全家崛起

福满农家:穿成团宠后带全家崛起

偶尔能做预知梦的大哥文能飞针走线纳鞋底子武能打遍村中无敌手的二姐过目不忘尤其喜欢数钱的三哥以及穿越后突然就现自己能听懂鼠语的穿越小妞种田?灾荒?战乱?不怕,看一家子奇葩凑到一起,如何家致富逆天改命!田小满表示老天爷啊,自己就是普普通通穿个越,怎么穿着穿着就有点一不可收拾,带全家崛起了呢!...

福孕娇宠玫瑰精粘人霸总痴心宠

福孕娇宠玫瑰精粘人霸总痴心宠

简介关于福孕娇宠玫瑰精粘人霸总痴心宠活了一千年的玫瑰精飞升当晚被雷劈死,意外获得生子系统,穿梭各个位面,攻略大反派,完成生子任务,就可以成功飞升世界一身娇体软软萌不受宠女主vs冷漠无情一心报仇男主婚礼前一天晚上,未婚夫跟同父异母哥哥的未婚妻搞在一起,原身被活活气死。穆倾云把目光放在渣男同姓的哥哥楚时宴身上。听闻大反派是私生子,性情阴郁,冷漠无情,势必要搞垮楚家,为母报仇穆倾云哥哥,他们给你戴绿帽子,你不打算报复回来吗?从那以后,玫瑰精靠生子被大反派宠上天。世界二禁欲霸总Vs软萌秘书传言霸总的青梅为了前程出国,一夜之间霸总成了工作狂,对女人提不起兴趣。听闻江城第一美人娇软听话易孕体质,当晚就被塞到霸总床上穆倾云医生说我体质易受孕,包你满意!第二天晚上穆倾云又出现在床上。奶奶说,以防万一,多来几次!世界三禁欲将军Vs亡国将军听说将军常年在外征战,镇守边疆,穆倾云打算和平共处,猥琐育。谁能告诉她,夜夜宿在她床榻的男人是谁?(ps生子爽文,女主可盐可甜,性格多变!)...

每日热搜小说推荐